
formidable Documentation
Release 0.1.0

Guillaume Gérard Guillaume Camera

Jun 28, 2021

Contents

1 Introduction 3
1.1 Django model schema . 3

2 Install 5
2.1 Install the app . 5
2.2 Configure the app . 5

3 Forms 9
3.1 Formidable object . 9
3.2 Roles and access-rights . 11
3.3 Conditions . 12
3.4 Python builder . 13

4 Formidable Form JSON Schema specification 15

5 API Specifications 29

6 Security setup 31
6.1 How to secure your django-formidable installation . 31
6.2 Example . 31
6.3 Secured fields . 32

7 Callbacks 33
7.1 The callback functions . 33
7.2 Fails silently . 34

8 Developer’s documentation 35
8.1 Testing . 35
8.2 Swagger documentation update . 36

9 Translations 37
9.1 Crowdin support . 37

10 Deprecation timeline 39
10.1 From 7.0.0 to x.y.z . 39
10.2 From 6.1.0 to 7.0.0 . 39
10.3 From 5.0.0 to 6.0.0 . 39
10.4 From 4.0.1 to 5.0.0 . 39

i

10.5 From 3.3.0 to 4.0.0 . 40
10.6 From 3.2.0 to 3.3.0 . 40
10.7 From 3.1.0 to 3.2.0 . 40
10.8 From 3.0.1 to 3.1.0 . 40
10.9 From 2.1.2 to 3.0.0 . 41
10.10 From 1.7.0 to 2.0.0 . 41
10.11 From 1.3.0 to 1.4.0 . 41
10.12 From 0.15 to 1.0.0 . 41
10.13 From 0.11.1 to 0.12.0 . 42
10.14 From 0.8.2 to 0.9 . 42

11 External Field Plugin Mechanism 43
11.1 Tree structure . 43
11.2 Loading the field for building time . 44
11.3 Load your field for the form filler . 46

12 Maintainers’ documentation 49
12.1 How to release . 49

13 Indices and tables 53

Index 55

ii

formidable Documentation, Release 0.1.0

Contents:

Contents 1

formidable Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Introduction

django-formidable allows your users to create/edit custom Django forms. django-formidable provides a
RESTful API, which can be used in conjunction with a front-end application. A number of endpoints are provided in
order to enable building forms via the API.

1.1 Django model schema

3

formidable Documentation, Release 0.1.0

4 Chapter 1. Introduction

CHAPTER 2

Install

2.1 Install the app

2.1.1 From PyPI

$ pip install django-formidable

2.1.2 From Github

You can also install django-formidable via GitHub:

pip install git+https://github.com/peopledoc/django-formidable.git

2.2 Configure the app

Before you can use the app, some things need to be configured in order to get it fully operational.
django-formidable has the ability to handle different roles and accesses on a per form basis. This is useful
when you have multiple types of user accessing the same form. If you don’t need multiple roles, just create a single
unique role, this will be enough.

2.2.1 Configure access-rights

First of all, you need to declare all available roles inside your application. To do this, create an formidable.
accesses.AccessObject per role needed.

5

formidable Documentation, Release 0.1.0

from formidable.accesses import AccessObject

jedi = AccessObject(id='jedi', label='Jedi')
padawan = AccessObject(id='padawan', label='Padawan')

Once your roles are defined, you will need to create a function to return them, in your projects (for the purposes of this
example, we’re assuming the function will be created in the module yourproject.access_rights):

def get_access_rights():
return [jedi, padawan]

The main idea is to create a function which can be called by django-formidable to get the declared
roles you defined previously. To tell django-formidable where the function is located, you need to add
FORMIDABLE_ACCESS_RIGHTS_LOADER to your settings:

FORMIDABLE_ACCESS_RIGHTS_LOADER = 'yourproject.access_rights.get_access_rights'

2.2.2 Fetch the context

When the content of a contextualised form are required, e.g. to render it in a JavaScript front-end,
django-formidable needs to know which context to fetch in order to render the correct fields with the right
permissions.

To do this, we’ll need to write some code which will be called by django-formidable.

Let’s assume your user model has a user_type attribute on it. In this case, you could write the following function:

def get_context(request, kwargs):
return request.user.user_type

The request is a standard Django request, as found in any view. Likewise, kwargs is a standard dictionary of
keyword arguments. Of course, the user type should correspond to the id of the AccessObject

Next fill the setting key FORMIDABLE_CONTEXT_LOADER:

FORMIDABLE_CONTEXT_LOADER = 'yourproject.access_rights.get_context'

2.2.3 Formidable’s URLs

URLs are defined in formidable.urls. You can load them with the following line:

url(r'^api/', include('formidable.urls', namespace='formidable'))

2.2.4 URLs accesses

The Formidable views are built with djangorestframework and use the related permissions in order
to handle accesses. So, you can write your own permissions with djangorestframework and use it in
django-formidable views.

By default, a restrictive permission is applied on all API views if nothing is specified in django settings.

You can specified a list of permissions classes to all the API views by providing the configuration key
FORMIDABLE_DEFAULT_PERMISSION:

6 Chapter 2. Install

formidable Documentation, Release 0.1.0

FORMIDABLE_DEFAULT_PERMISSION = ['rest_framework.permissions.AllowAll']

There are two kinds of views,

1. views which allow to create or edit forms (handled by FORMIDABLE_PERMISSION_BUILDER) 2. views to use
the form previously defined (handled by. FORMIDABLE_PERMISSION_USING).

You can provide any permissions you want.

2.2.5 CSRF

If you’re dealing with logged-in users (you surely do), you’re going to need to provide a CSRF Token when validating
a creation or an edit form. If you don’t provide it or if your CSRF is misconfigured, you’ll receive a 403 error when
trying to save your forms.

In order to do so, you’ll have to use a code similar to this:

function setupCRSFToken(csrftoken) {
$.ajaxSetup({
beforeSend: function(xhr, settings) {

if (!/^(GET|HEAD|OPTIONS|TRACE)$/.test(settings.type) && !this.crossDomain) {
xhr.setRequestHeader("X-CSRFToken", csrftoken);

}
}

});
}

Warning: you’ll have to make sure that your CSRF configuration is properly set (middlewares, context managers,
etc).

Then in your templates, those that’ll have to display and handle the form editor, you’ll have to call this function like
this:

<script src="{% static "assets/csrftoken.js" %}"></script>
<script type="text/javascript">

$(document).ready(function() {
setupCRSFToken('{{ csrf_token }}');

});
</script>

This way, every AJAX call coming from this template will provide a token that’ll fit Django’s (and Django REST
Framework) requirements.

2.2. Configure the app 7

formidable Documentation, Release 0.1.0

8 Chapter 2. Install

CHAPTER 3

Forms

The main purpose of this app is to handle Forms. Of course, the app provides an API to Create and Edit forms,
but it’s not the only option: django-formidable also provides a full python builder in order to create forms.
django-formidable also provides a method to retrieve a standard django form class which can then be used just
like an ordinary django form.

3.1 Formidable object

The main class is formidable.models.Formidable. This class is a classic django model which defines a
representation of a dynamic form.

class formidable.models.Formidable(id, label, description, conditions)

exception DoesNotExist

exception MultipleObjectsReturned

static from_json(definition_schema, **kwargs)
Proxy static method to create an instance of Formidable more easily with a given
definition_schema.

Params definition_schema Schema in JSON/dict

>>> Formidable.from_json(definition_schema)
<Formidable: Formidable object>

get_django_form_class(role=None, field_factory=None)
Return the django form class associated with the formidable definition. If no role_id is provided all the
fields are fetched with an EDITABLE access-right. :params role: Fetch defined access for the specified
role. :params field_factory: Instance of Custom field factory if needed. :params field_map: Custom Field
Builder used by the field_factory.

get_next_field_order()
Get the next order to set on the field to arrive. Try to avoid using this method for performance reasons.

9

formidable Documentation, Release 0.1.0

This is the main object which is used to create or edit dynamic forms through the RESTful API or directly in
Python/Django.

3.1.1 Django form class

One of the main feature is to provide a standard django form class built from the definition stored as
Formidable object. The django form class is accessible throught the formidable.models.Formidable.
get_django_form_class().

>>> formidable = Formidable.objects.get(pk=42)
>>> form_class = formidable.get_django_form_class()

This form class can be manipulated as all django form class, you can build an instance to validate data:

>>> form = form_class(data={'first_name': 'Obiwan'})
>>> form.is_valid()
False
>>> form.errors
{'last_name': ['This field is required.']}
>>> form = form_class(data={'first_name': 'Obiwan', 'last_name': 'Kenobi'})
>>> form.is_valid()
True

Or to render it:

{{ form.as_p }}

When a standard mechanism is implemented, you have a method to custom the final objec we get.
django-formidable provides a way in order to custom the form class you get.

Each kind of field is built with an associated FieldBuilder:

slug Field / Widgets FieldBuilder
text CharField / TextInput formidable.forms.field_builder.

TextFieldBuilder
para-
graph

CharField / TextArea formidable.forms.field_builder.
ParagraphFieldBuilder

drop-
down

ChoiceField / Select formidable.forms.field_builder.
DropdownFieldBuilder

checkbox ChoiceField / CheckboxInput formidable.forms.field_builder.
CheckboxFieldBuilder

radios ChoiceField / RadioSelect formidable.forms.field_builder.
RadioFieldBuilder

check-
boxes

ChoiceField / CheckboxSelect-
Multiple

formidable.forms.field_builder.
CheckboxesFieldBuilder

email EmailField / TextInput formidable.forms.field_builder.
EmailFieldBuilder

date DateField formidable.forms.field_builder.
DateFieldBuilder

number IntegerField formidable.forms.field_builder.
IntegerFieldBuilder

So, as describe in django document (https://docs.djangoproject.com/en/1.9/topics/forms/media/
#assets-as-a-static-definition), if you want add a CalendarWidget on the date field on your form, you can
write your own field builder.

10 Chapter 3. Forms

https://docs.djangoproject.com/en/1.9/topics/forms/media/#assets-as-a-static-definition
https://docs.djangoproject.com/en/1.9/topics/forms/media/#assets-as-a-static-definition

formidable Documentation, Release 0.1.0

from django import forms

from formidable.forms.field_builder import DateFieldBuilder, FormFieldFactory

class CalendarWidget(forms.TextInput):

class Media:
css = {

'all': ('pretty.css',)
}
js = ('animations.js', 'actions.js')

class CalendarDateFieldBuilder(DateFieldBuilder):
widget_class = CalendarWidget

class MyFormFieldFactory(FormFieldFactory):
field_map = FormFieldFactory.field_map.copy()
field_map['date'] = CalendarDateFieldBuilder

With this definition you can call:

>>> formidable.get_django_form_class(field_factory=MyFormFieldFactory)

3.2 Roles and access-rights

3.2.1 Roles

One of the main features of formidable is to set up different access-rights for the same form. This way, you can
create a form with certain fields that are only accessible to a specific group of users, for example.

For the moment, formidable is not designed to work without roles, so even if you don’t need to handle multiple
roles or access-rights inside your application, you will still have to define a default role for formidable to work
properly.

All roles must be declared through a formidable.accesses.AccessObject instance. This class must be
instantiated with an id and a label. The id has to be unique, it’s up to you to maintain this constraint. The label
serves as a human readable value. You can set this to any string you like.

from formidable.accesses import AccessObject

padawan = AccessObject(id='padawan', label='Padawan')
jedi = AccessObject(id='jedi', label='Jedi')
sith = AccessObject(id='sith', label='Bad Guy')

django-formidable needs to know how to get all declared instances. To do so, you will need to create a function
which returns the correct instances:

def get_accesses():
return [padawan, jedi, sith]

Once this function is defined, you will need to fill the settings key FORMIDABLE_ACCESS_RIGHTS_LOADER.

3.2. Roles and access-rights 11

formidable Documentation, Release 0.1.0

FORMIDABLE_ACCESS_RIGHTS_LOADER = 'myapp.accesses.get_accesses'

Once this is done, django-formidable will know which roles have been defined, so it can create or check access-
rights as necessary.

3.2.2 Fetch context

Occasionally, django-formidable will require access to the web request’s context, e.g. to find out which kind of
user is accessing the current form.

For this reason, you must define a function to fetch the context of the current request. The function takes as parameters
the request object of the view (self.request) and the view kwargs (self.kwargs).

The function must return an access id which is defined in one of the AccessObject instances returned by the method
configured in FORMIDABLE_ACCESS_RIGHTS_LOADER.

If the user’s role is defined as an attribute, you can just return it directly:

def fetch_context(request, kwargs):
return request.user.role

Then, set FORMIDABLE_CONTEXT_LOADER in your settings:

FORMIDABLE_CONTEXT_LOADER = myapp.accesses.fetch_context

3.2.3 Available access-rights

For each field of a form, and for each role you have defined, you can define a specific access-right. There are four
different available access-rights:

• EDITABLE, the user may fill-in the field but there is no obligation to do so.

• REQUIRED, the user must fill-in the field in order to submit the form.

• READONLY, this will render the field as disabled, allowing the user to view but not modify its contents.

• HIDDEN, the field will not be available to the user, preventing the user from either viewing or modifying its
contents.

All the value are defined in formidable.constants

3.3 Conditions

Important: As of 1.4.0, it is allowed to have several conditional display rules that target a common field. In case
of “conflict” between these rules, priority goes to the display, rather than the hide action.

e.g.:

• Rule 1 says: “if checkbox-1 is checked, then display field X”

• Rule 2 says: “if checkbox-2 is checked, then display field X and Y”

if only checkbox-1 is checked, field X will be displayed, even if checkbox-2 is unchecked, and vice-versa. If both are
checked, fields X and Y will be displayed. If none is checked, fields X and Y will be hidden.

12 Chapter 3. Forms

formidable Documentation, Release 0.1.0

3.3.1 Types for conditional rules

At this moment, we can guarantee only the support of the checkboxes and dropdown lists, but normally you could use
it for any type you want.

Also, you could specify types allowed for the conditions using the settings variable
FORMIDABLE_CONDITION_FIELDS_ALLOWED_TYPES By default formidable will accept any type.

FORMIDABLE_CONDITION_FIELDS_ALLOWED_TYPES = [] # formidable will allow any type for
→˓the conditional rules
FORMIDABLE_CONDITION_FIELDS_ALLOWED_TYPES = ['checkbox'] # formidable will allow
→˓checkboxes only

In case you try to configure a conditional display based on a field that has been excluded from the allowed types, you’ll
receive a ValidationError when trying to save the form.

Here is a list of all the available types:

available_types = [
'title', 'helpText', 'fieldset', 'fieldsetTable', 'separation',
'checkbox', 'checkboxes', 'dropdown', 'radios', 'radiosButtons',
'text', 'paragraph', 'file', 'date', 'email', 'number'

]

3.4 Python builder

In some cases, you may want to build a formidable object without using the RESTful API (in tests for example).
django-formidable provides a Python API in order to that. Take a look at formidable.forms.fields to
discover all the fields that are available through this API.

The main class to use is formidable.forms.FormidableForm. Feel free to subclass this form and define your
own form(s), just like any other django form.

For example, let’s say we need to build a form with a first name, last name and a description. We can use
formidable.fields to accomplish this. Lets consider using the different roles defined in the installation part,
jedi and padawan.

from formidable.forms import FormidableForm
from formidable.forms import fields

class MySubscriptionForm(FormidableForm):

first_name = fields.CharField(label='Your First Name')
last_name = fields.CharField(label='Your Last Name')
description = fields.TextField(

label='Description',
help_text='Tell us about yourself.'

)

Attributes like required should not be used as these will depend on the context when the form is built. If you
want to define a field as required, it will need to be required for a specific role through the accesses argument.
This argument is a dictionary containing the various access-rights for each role. By default, if you don’t specify any
access-rights for a previously defined role, the field will be created as EDITABLE:

3.4. Python builder 13

formidable Documentation, Release 0.1.0

class MySubscriptionForm(FormidableForm):

first_name = fields.CharField(
label='Your First Name',
accesses={'padawan': constants.REQUIRED, 'jedi': constants.READONLY}

)
last_name = fields.CharField(label='Your Last Name')
description = fields.TextField(

label='Description',
help_text='Tell us about yourself.'

)

When the form definition is complete, you can create a new formidable.models.Formidable object:

formidable = MySubscriptionForm.to_formidable(
label='My Subscription Form',
description='This form is for subscribing to the jedi order.')

This method will create the object in the database and return the complete instance:

>>> formidable.pk
42

You can also get the django form class from the formidable object:

>>> form_class = formidable.get_django_form_class(role='padawan')

For our ‘padawan’ role, the first_name is required:

>>> form = form_class(data={'last_name': 'Kenobi'})
>>> form.is_valid()
False
>>> form.errors
{'first_name': ['This field is required.']}

3.4.1 Available fields

3.4.2 Available Widgets

14 Chapter 3. Forms

CHAPTER 4

Formidable Form JSON Schema specification

definitions
• Access Different contexts that helps to render a form

type object
properties

• description Help text of the access
type string

• id ID of the access
type string

• label Label of the access
type string

• preview_as How to display the preview, default is FORM. Values are FORM,
TABLE
type string
enum FORM, TABLE

• BuilderError type object
properties

• fields Errors on fields (key => field; value => list of messages)
type object

•
non_field_errors

Errors on anything except fields (validations. . .)
type array
items type string

• BuilderForm allOf #/definitions/Form
properties

• fields List of fields ordered in the form
type array
items #/definitions/Field

• Condition Describe conditional display of a field, depending on the value of another field.
e.g.: “display the field ‘what is you favorite Star Wars character?’ if the boolean field ‘Do
you like Star Wars?’ is checked”.
type object
properties

Continued on next page

15

formidable Documentation, Release 0.1.0

Table 1 – continued from previous page
• action Name of the action to do when the condition is true. e.g. “display

the field” == display_iff
type string
enum display_iff

• field_ids List of field slugs to show/hide depending on the conditions.
type array
items type string
minItems 1

• name A user-provided name for the Condition
type string

• tests List of conditions to test.
type array
items #/definitions/ConditionTest
minItems 1

•
ConditionTest

Condition definition.
type object
properties

• field_id ‘slug‘ of the reference field for the comparison.
type string

• operator Comparison operator for the condition.
type string
enum eq

• values List of the possible values that would return a “true” condition.
type array
items

• Field Field in a form
type object
properties

• accesses List of accesses of the field with a level
type array
items #/definitions/FieldAccess

• defaults Default values selected/inputed when the form is newly displayed
type array
items type string

• description Description of the field
type string

• id ID of the field
type integer

• items Values available
type array
items #/definitions/Item

• label Label of the field
type string

• multiple Is the field can have multiple values?
type boolean

• placeholder Placeholder of the field
type string

• slug Slug of the field (us as uniq identifier of the field on the form)
type string

• type_id Type of field (see Field types table)
type string

Continued on next page

16 Chapter 4. Formidable Form JSON Schema specification

formidable Documentation, Release 0.1.0

Table 1 – continued from previous page
enum title, helpText, fieldset, fieldsetTable, sep-

aration, checkbox, checkboxes, dropdown,
radios, radiosButtons, text, paragraph, file,
date, email, number

• validations List of validations of the field
type array
items #/definitions/FieldValidation

• FieldAccess The access is the way to use the field in the context
type object
properties

• access_id Access reference
type string

• level Level of this access for the field
type string
enum REQUIRED, EDITABLE, HIDDEN,

READONLY
•

FieldValidation
This validation can only be performed on a single field
type object
properties

• message Error message if the validation is not verified
type string

• type Type of validation (see Validation types table)
type string
enum EQ, GT, GTE, IS_AGE_ABOVE,

IS_AGE_UNDER,
IS_DATE_IN_THE_FUTURE,
IS_DATE_IN_THE_PAST, LT, LTE,
MAXLENGTH, MINLENGTH, NEQ,
REGEXP

• value Value of the validation
type string

• Form The central piece of this project
type object
properties

• conditions type array
items #/definitions/Condition

• description Description of the form - can be empty
type string

• id ID of the form
type integer

• label Title of the form
type string

• InputError Object that contains field errors as key with a list of string in value
type object
properties

• __all__ Errors on anything except form’s fields
type array
items type string

• InputField properties
• values Values selected/inputed when the form is in edition mode

type array
items type string

Continued on next page

17

formidable Documentation, Release 0.1.0

Table 1 – continued from previous page
allOf #/definitions/Field

• InputForm allOf #/definitions/Form
properties

• fields List of fields ordered in the form
type array
items #/definitions/InputField

• Item Describe an item in a list
type object
properties

• description Description of the item
type string

• label Label of the item
type string

• value Value which defined the item
type string

Or, in raw JSON:

{
"basePath": "/api",
"definitions": {

"Access": {
"description": "Different contexts that helps to render a form",
"properties": {

"description": {
"description": "Help text of the access",
"type": "string"

},
"id": {

"description": "ID of the access",
"type": "string"

},
"label": {

"description": "Label of the access",
"type": "string"

},
"preview_as": {

"description": "How to display the preview, default is `FORM`.
→˓Values are `FORM`, `TABLE`",

"enum": [
"FORM",
"TABLE"

],
"type": "string"

}
},
"required": [

"id",
"label",
"description"

],
"type": "object"

},
"BuilderError": {

"properties": {

(continues on next page)

18 Chapter 4. Formidable Form JSON Schema specification

formidable Documentation, Release 0.1.0

(continued from previous page)

"fields": {
"description": "Errors on fields (key => field; value => list of

→˓messages)",
"type": "object"

},
"non_field_errors": {

"description": "Errors on anything except fields (validations...)
→˓",

"items": {
"type": "string"

},
"type": "array"

}
},
"type": "object"

},
"BuilderForm": {

"allOf": [
{

"$ref": "#/definitions/Form"
},
{

"properties": {
"fields": {

"description": "List of fields ordered in the form",
"items": {

"$ref": "#/definitions/Field"
},
"type": "array"

}
}

}
]

},
"Condition": {

"description": "Describe conditional display of a field, depending on the
→˓value of another field.\n\ne.g.: \"display the field 'what is you favorite Star
→˓Wars character?' if the boolean field 'Do you like Star Wars?' is checked\".\n",

"properties": {
"action": {

"description": "Name of the action to do when the condition is
→˓true. e.g. \"display the field\" == ``display_iff``",

"enum": [
"display_iff"

],
"type": "string"

},
"field_ids": {

"description": "List of field slugs to show/hide depending on the
→˓conditions.",

"items": {
"type": "string"

},
"minItems": 1,
"type": "array"

},
"name": {

(continues on next page)

19

formidable Documentation, Release 0.1.0

(continued from previous page)

"description": "A user-provided name for the Condition",
"type": "string"

},
"tests": {

"description": "List of conditions to test.",
"items": {

"$ref": "#/definitions/ConditionTest"
},
"minItems": 1,
"type": "array"

}
},
"required": [

"field_ids",
"action",
"tests"

],
"type": "object"

},
"ConditionTest": {

"description": "Condition definition.",
"properties": {

"field_id": {
"description": "\\`slug\\` of the reference field for the

→˓comparison.",
"type": "string"

},
"operator": {

"description": "Comparison operator for the condition.",
"enum": [

"eq"
],
"type": "string"

},
"values": {

"description": "List of the possible values that would return a \
→˓"true\" condition.",

"items": {},
"type": "array"

}
},
"required": [

"field_id",
"operator",
"values"

],
"type": "object"

},
"Field": {

"description": "Field in a form",
"properties": {

"accesses": {
"description": "List of accesses of the field with a level",
"items": {

"$ref": "#/definitions/FieldAccess"
},
"type": "array"

(continues on next page)

20 Chapter 4. Formidable Form JSON Schema specification

formidable Documentation, Release 0.1.0

(continued from previous page)

},
"defaults": {

"description": "Default values selected/inputed when the form is
→˓newly displayed",

"items": {
"type": "string"

},
"type": "array"

},
"description": {

"description": "Description of the field",
"type": "string"

},
"id": {

"description": "ID of the field",
"readOnly": true,
"type": "integer"

},
"items": {

"description": "Values available",
"items": {

"$ref": "#/definitions/Item"
},
"type": "array"

},
"label": {

"description": "Label of the field",
"type": "string"

},
"multiple": {

"description": "Is the field can have multiple values?",
"type": "boolean"

},
"placeholder": {

"description": "Placeholder of the field",
"type": "string"

},
"slug": {

"description": "Slug of the field (us as uniq identifier of the
→˓field on the form)",

"type": "string"
},
"type_id": {

"description": "Type of field (see Field types table)",
"enum": [

"title",
"helpText",
"fieldset",
"fieldsetTable",
"separation",
"checkbox",
"checkboxes",
"dropdown",
"radios",
"radiosButtons",
"text",
"paragraph",

(continues on next page)

21

formidable Documentation, Release 0.1.0

(continued from previous page)

"file",
"date",
"email",
"number"

],
"type": "string"

},
"validations": {

"description": "List of validations of the field",
"items": {

"$ref": "#/definitions/FieldValidation"
},
"type": "array"

}
},
"required": [

"id",
"slug",
"label",
"type_id",
"description",
"accesses"

],
"type": "object"

},
"FieldAccess": {

"description": "The access is the way to use the field in the context",
"properties": {

"access_id": {
"description": "Access reference",
"type": "string"

},
"level": {

"description": "Level of this access for the field",
"enum": [

"REQUIRED",
"EDITABLE",
"HIDDEN",
"READONLY"

],
"type": "string"

}
},
"required": [

"access_id",
"level"

],
"type": "object"

},
"FieldValidation": {

"description": "This validation can only be performed on a single field",
"properties": {

"message": {
"description": "Error message if the validation is not verified",
"type": "string"

},
"type": {

(continues on next page)

22 Chapter 4. Formidable Form JSON Schema specification

formidable Documentation, Release 0.1.0

(continued from previous page)

"description": "Type of validation (see Validation types table)",
"enum": [

"EQ",
"GT",
"GTE",
"IS_AGE_ABOVE",
"IS_AGE_UNDER",
"IS_DATE_IN_THE_FUTURE",
"IS_DATE_IN_THE_PAST",
"LT",
"LTE",
"MAXLENGTH",
"MINLENGTH",
"NEQ",
"REGEXP"

],
"type": "string"

},
"value": {

"description": "Value of the validation",
"type": "string"

}
},
"required": [

"type",
"value"

],
"type": "object"

},
"Form": {

"description": "The central piece of this project",
"properties": {

"conditions": {
"items": {

"$ref": "#/definitions/Condition"
},
"type": "array"

},
"description": {

"description": "Description of the form - can be empty",
"type": "string"

},
"id": {

"description": "ID of the form",
"readOnly": true,
"type": "integer"

},
"label": {

"description": "Title of the form",
"type": "string"

}
},
"required": [

"id",
"label",
"description"

],
(continues on next page)

23

formidable Documentation, Release 0.1.0

(continued from previous page)

"type": "object"
},
"InputError": {

"description": "Object that contains field errors as key with a list of
→˓string in value",

"properties": {
"__all__": {

"description": "Errors on anything except form's fields",
"items": {

"type": "string"
},
"type": "array"

}
},
"type": "object"

},
"InputField": {

"allOf": [
{

"$ref": "#/definitions/Field"
}

],
"properties": {

"values": {
"description": "Values selected/inputed when the form is in

→˓edition mode",
"items": {

"type": "string"
},
"type": "array"

}
}

},
"InputForm": {

"allOf": [
{

"$ref": "#/definitions/Form"
},
{

"properties": {
"fields": {

"description": "List of fields ordered in the form",
"items": {

"$ref": "#/definitions/InputField"
},
"type": "array"

}
}

}
]

},
"Item": {

"description": "Describe an item in a list",
"properties": {

"description": {
"description": "Description of the item",
"type": "string"

(continues on next page)

24 Chapter 4. Formidable Form JSON Schema specification

formidable Documentation, Release 0.1.0

(continued from previous page)

},
"label": {

"description": "Label of the item",
"type": "string"

},
"value": {

"description": "Value which defined the item",
"type": "string"

}
},
"required": [

"label",
"value"

],
"type": "object"

}
},
"host": "localhost:8000",
"info": {

"description": "django-formidable is a full django application which allows
→˓you to create,\nedit, delete and use forms.\n\n##### Field types\n\nList of known
→˓types available:\n\n| Type | Description | HTML Component |\n| ---- | ----------- |
→˓-------------- |\n| title | Title | h2 |\n| helpText | Helptext | p |\n| fieldset |
→˓Group of fields (iterable) | fieldset |\n| fieldsetTable | Group of fields display
→˓as table (iterable) | table |\n| separation | Separator line (design only) | hr
→˓|\n| checkbox | Checkbox alone | input type=checkbox |\n| checkboxes | Some
→˓checkboxes, all checkable | input type=checkbox, all have the same name |\n|
→˓dropdown | Dropdown with values | select |\n| radios | Some radios, only one is
→˓selected at once | input type=radio |\n| radiosButtons | Some radios display as
→˓toggle button | input type=radio |\n| text | Input for one line text | input
→˓type=text |\n| paragraph | Input for multiline text | textarea |\n| file | Field to
→˓select a local file to be uploaded | input type=file |\n| date | Input for a date
→˓(datepicker with it, lang know by application parameter, validation by momentjs) |
→˓input type=date |\n| email | Input for an email (validation by regexp) | input |\n|
→˓number | Input for a number | input |\n\n##### Validations types\n\nList of
→˓validations available by types:\n\n| Field | Validation type |\n| ----- | ----------
→˓- |\n| text | MINLENGTH, MAXLENGTH, REGEXP |\n| paragraph | MINLENGTH, MAXLENGTH,
→˓REGEXP |\n| date | GT, GTE, LT, LTE, EQ, NEQ, IS_AGE_ABOVE (>=), IS_AGE_UNDER (<),
→˓IS_DATE_IN_THE_PAST (< today), IS_DATE_IN_THE_FUTURE (< today) |\n| number | GT,
→˓GTE, LT, LTE, EQ, NEQ |\n",

"title": "Formidable API",
"version": "1.0.0"

},
"paths": {

"/builder/accesses/": {
"get": {

"description": "List of accesses available.",
"responses": {

"200": {
"description": "A list of accesses",
"schema": {

"items": {
"$ref": "#/definitions/Access"

},
"type": "array"

}
}

(continues on next page)

25

formidable Documentation, Release 0.1.0

(continued from previous page)

},
"summary": "Get accesses"

}
},
"/builder/forms/": {

"post": {
"description": "Create Form Description",
"parameters": [

{
"in": "body",
"name": "form",
"required": true,
"schema": {

"$ref": "#/definitions/BuilderForm"
}

}
],
"responses": {

"201": {
"description": "Newly created form",
"schema": {

"$ref": "#/definitions/BuilderForm"
}

},
"400": {

"description": "Unexpected error",
"schema": {

"$ref": "#/definitions/BuilderError"
}

}
},
"summary": "Create a new form"

}
},
"/builder/forms/{id}/": {

"get": {
"parameters": [

{
"in": "path",
"name": "id",
"required": true,
"type": "integer"

}
],
"responses": {

"200": {
"description": "Form",
"schema": {

"$ref": "#/definitions/BuilderForm"
}

}
},
"summary": "Retrieve a Form"

},
"put": {

"parameters": [
{

(continues on next page)

26 Chapter 4. Formidable Form JSON Schema specification

formidable Documentation, Release 0.1.0

(continued from previous page)

"in": "path",
"name": "id",
"required": true,
"type": "integer"

},
{

"in": "body",
"name": "form",
"required": true,
"schema": {

"$ref": "#/definitions/BuilderForm"
}

}
],
"responses": {

"200": {
"description": "Form",
"schema": {

"$ref": "#/definitions/BuilderForm"
}

},
"400": {

"description": "Unexpected error",
"schema": {

"$ref": "#/definitions/BuilderError"
}

}
},
"summary": "Update a Form"

}
},
"/forms/{id}/": {

"get": {
"parameters": [

{
"in": "path",
"name": "id",
"required": true,
"type": "integer"

}
],
"responses": {

"200": {
"description": "A form",
"schema": {

"$ref": "#/definitions/BuilderForm"
}

}
},
"summary": "Get a contextualized form"

}
},
"/forms/{id}/validate/": {

"post": {
"parameters": [

{
"in": "path",

(continues on next page)

27

formidable Documentation, Release 0.1.0

(continued from previous page)

"name": "id",
"required": true,
"type": "integer"

}
],
"responses": {

"204": {
"description": "Validation OK"

},
"400": {

"description": "Validation KO",
"schema": {

"$ref": "#/definitions/InputError"
}

}
},
"summary": "Validate user-data against a form schema."

}
}

},
"produces": [

"application/json"
],
"schemes": [

"http"
],
"swagger": "2.0"

}

28 Chapter 4. Formidable Form JSON Schema specification

CHAPTER 5

API Specifications

29

formidable Documentation, Release 0.1.0

30 Chapter 5. API Specifications

CHAPTER 6

Security setup

As any other web application, Django Formidable might be targeted by pirates who would try to inject SQL or mali-
cious code through Javascript or any other XSS method.

6.1 How to secure your django-formidable installation

Add the following settings: DJANGO_FORMIDABLE_SANITIZE_FUNCTION. It should be a string that points at a
function.

Important: We highly recommend to use bleach, with dedicated adjustments in order to make sure you’re sanitizing
your content in a proper way.

See bleach documentation for creating your own parameters when calling the clean() function.

6.2 Example

In your settings.py, add the following:

DJANGO_FORMIDABLE_SANITIZE_FUNCTION = "path.to.module.clean_func"

And then in the path/to/module.py module, add a function that would look like this:

import bleach

def clean_func(obj):
"""
Sanitize API text content
"""
return bleach.clean(obj, strip=True)

31

https://pypi.org/project/bleach/
https://bleach.readthedocs.io/en/latest/

formidable Documentation, Release 0.1.0

Warning: If you don’t add this settings or if its value is not importable (typo, missing PYTHONPATH, etc.):

• an error log will be raised,

• django-formidable won’t sanitize your contents for you.

6.3 Secured fields

• Form label & description,

• Field label, description (help text), defaults, placeholder.

32 Chapter 6. Security setup

CHAPTER 7

Callbacks

New in version 0.5.

Each time a formidable form is created or updated, the API views are able to call a function that can help you trigger
actions. For example, you can use the django.contrib.messages to inform your current user that their form
has been successfully saved or that a problem has occurred ; or send an email or ping an API, or. . . whatever you
want.

By default, the view won’t load and launch anything. In order to set a callback up, you’ll need to give a value to any
of the following variables:

• FORMIDABLE_POST_CREATE_CALLBACK_SUCCESS: callback to call when form creation is successful.

• FORMIDABLE_POST_CREATE_CALLBACK_FAIL: callback to call when form creation has failed.

• FORMIDABLE_POST_UPDATE_CALLBACK_SUCCESS: callback to call when form update is successful.

• FORMIDABLE_POST_UPDATE_CALLBACK_FAIL: callback to call when form update has failed.

7.1 The callback functions

A callback function is a function that accepts only one argument, the request object coming from the API View. It
doesn’t have to return anything, it can make multiple calls. . . it’s up to you.

def callback_on_success(request):
mail.send(request.user.email, 'All is fine')

Warning: the DRF request is not inherited from django core, HTTPRequest, and you should not assume they’ll
behave the same way. It shares some properties, so it may quack like a duck, but it’s not a duck.

If you need the “true” HTTPRequest object, use self.request._request. That might be the case if you
want to use the django.contrib.messages.

def callback_on_success(request):
messages.info(request._request, "Your form is recorded")

33

formidable Documentation, Release 0.1.0

7.2 Fails silently

At the moment, if your callback fails for some reason and throws an exception, the exception is logged and the error is
skipped. We’ve decided not to re-raise the exception to avoid your database transaction to be rolled back and the form
you’ve tried to save being lost. After all, it’s not the users fault if the callback has failed, but the integrator’s.

At some point, we may add a “fail” mode and re-raise the exception and allow the integrator to make sure that the DB
transaction is either committed if everything is fine, or aborted if something bad happened in the callback function.

34 Chapter 7. Callbacks

CHAPTER 8

Developer’s documentation

8.1 Testing

8.1.1 Prerequisites

If you want to run the whole test suite, you’ll need to have a working Postgresql server instance (preferrably
the latest), with the pg_virtualenv tool available. On Debian, this executable is provided by the package
postgresql-common.

If you don’t have this tools in your toolbox, then. . . if you’re doing a change that impacts the performance records,
you won’t be able to see or generate the diff, so your branch tests would fail.

Note: Postgresql driver is only available for Linux or MacOS.

8.1.2 Using tox

Tests are launched using tox. You may want to become proficient with this tool but the core command you need to
know is:

$ tox

This will run all the test suite, combining

• all versions of Django supported,

• all the Python interpreters supported,

• all versions of Django REST Framework supported,

• on SQLite Databases + Postgresql Databases

Targeting a specific environment is done using:

35

http://tox.readthedocs.io/

formidable Documentation, Release 0.1.0

$ tox -e django22-py38-drf310-sqlite

If you want to target a specific test, simply add its namespace after a double-dash --.

For example, the following will run test_fields test module using Django 2.2, Python 3.8 using a SQLite
database:

$ tox -e django22-py38-drf310-sqlite -- tests.test_fields

And the following will run the same test class for all the supported environments:

$ tox -- tests.test_fields.RenderingFormatField

If somehow you’ve messed-up with your environment(s), you can still recreate it/them using:

$ tox -r # RECREATE ALL THE THINGS
recreate and run tests using django 2.2 + python 3.8 + DRF 3.10 + SQLite DB.
$ tox -re django22-py38-drf310-sqlite

8.1.3 Using py.test

You can also run tests with py.test.

You can install it with the following command:

$ pip install pytest{,-django}
Optionally
$ pip install pytest-sugar

We’ve added a section in our setup.cfg, so you should be able to run tests simply with:

$ cd demo/
$ py.test

8.2 Swagger documentation update

If at any point you’ve changed something in the docs/swagger/formidable.yml file, you’ll have to run the
following to refresh at least the docs/source/_static/specs/formidable.js file that will be used in the
API Specifications document.

Run the following to regenerate all the necessary statics:

$ tox -e swagger-statics

and commit the diffs in your PR.

36 Chapter 8. Developer’s documentation

CHAPTER 9

Translations

9.1 Crowdin support

deprecated:: 2.0.0

As of the version 2.0.0, the Django Formidable project doesn’t handle any translatable string anymore.

37

formidable Documentation, Release 0.1.0

38 Chapter 9. Translations

CHAPTER 10

Deprecation timeline

10.1 From 7.0.0 to x.y.z

10.1.1 Django REST Framework versions

New in version x.y.z: Add/Confirm support of Django REST Framework 3.11

10.2 From 6.1.0 to 7.0.0

New in version <7.0.0>: The description field in the Formidable model class would now allow empty values.

10.3 From 5.0.0 to 6.0.0

10.3.1 Python versions

Deprecated since version 6.0.0: Drop support for Python 3.5

10.4 From 4.0.1 to 5.0.0

10.4.1 Django versions

Deprecated since version 5.0.0: Drop support for Django 1.11

10.4.2 Django REST Framework versions

Deprecated since version 5.0.0: Drop support for Django Rest Framework 3.8

39

formidable Documentation, Release 0.1.0

10.5 From 3.3.0 to 4.0.0

Jan 8th, 2020.

10.5.1 Python versions

Deprecated since version 4.0.0: Drop support for Python 2.7 (EOL is January 1st, 2020)

10.5.2 Configuration option

New in version 4.0.0: Added support for XSS prevention using the DJANGO_FORMIDABLE_SANITIZE_FUNCTION
settings. See the security Documentation for more information.

10.6 From 3.2.0 to 3.3.0

10.6.1 Django versions

New in version 3.3.0: Added support for Django 2.2. Django Formidable should probably work on Django 2.0 and
2.1, but it’s not in our test suite. We’ve decided to skip those versions because of their short-term support.

10.6.2 Python versions

New in version 3.3.0: Added support for Python 3.7 and 3.8

10.7 From 3.1.0 to 3.2.0

November 7th, 2019

10.7.1 Django versions

Deprecated since version 3.2.0: Drop support for Django 1.10 (EOL was in December 2nd, 2017)

10.8 From 3.0.1 to 3.1.0

June 3rd, 2019

10.8.1 Django REST Framework versions

New in version 3.1.0: Support for Django REST Framework on all versions up to the 3.9 series.

40 Chapter 10. Deprecation timeline

https://django-formidable.readthedocs.io/en/master/security.html

formidable Documentation, Release 0.1.0

10.9 From 2.1.2 to 3.0.0

October 31st, 2018

10.9.1 Django REST Framework versions

Deprecated since version 3.0.0: Support for Django REST Framework stricly greater than 3.8. The 3.9 series has
introduced an incompatibility with django-formidable.

10.10 From 1.7.0 to 2.0.0

(end of May 2018)

10.10.1 Django versions

Deprecated since version 2.0.0: Support for Django 1.8 & 1.9.

10.10.2 Crowdin

Deprecated since version 2.0.0: The Django Formidable project doesn’t handle any translatable string anymore.

10.11 From 1.3.0 to 1.4.0

10.11.1 Validation endpoint

Deprecated since version 1.4.0: Validation endpoint for user data doesn’t allow GET method anymore.

10.12 From 0.15 to 1.0.0

(September 2017)

10.12.1 Form Presets

Deprecated since version 1.0.0: Form presets will be deprecated in favor of Field validation rules. If needed, you’ll
have to convert your existing Presets to Field validations, because Presets data will be destroyed using a table deletion.

10.12.2 Django Rest Framework version

Deprecated since version 1.0.0: DRF 3.3 support will be deprecated. We recommend to use the latest to date (3.6.4).

10.9. From 2.1.2 to 3.0.0 41

formidable Documentation, Release 0.1.0

10.13 From 0.11.1 to 0.12.0

Deprecated since version 0.12.0: Python 3.4 support has been dropped.

10.14 From 0.8.2 to 0.9

Deprecated since version 0.9: Python 3.3 support has been dropped.

42 Chapter 10. Deprecation timeline

CHAPTER 11

External Field Plugin Mechanism

New in version 3.0.0.

We’ve included a mechanism to add your own fields to the collection of available fields in django-formidable.

It’ll be possible to:

• define a new form using this new type of field,

• store their definition and parameters in a Formidable object instance (and thus, in the database),

• using this form definition, validate the end-user data when filling this form against your field business logic
mechanism.

For the sake of the example, let’s say you want to add a “Color Picker” field in django-formidable. You’ll have to
create a django library project that we’ll call django-formidable-color-picker. Let’s say that this module
has its own setup.py with the appropriate scripts to be installed in dev mode using pip install -e ./.

Let’s also say that you have added it in your INSTALLED_APPS.

11.1 Tree structure

.
formidable_color_picker

apps.py
__init__.py

| | field_builder.py
serializers.py

setup.cfg
setup.py

43

formidable Documentation, Release 0.1.0

11.2 Loading the field for building time

The first file we’re going to browse is serializers.py. Here’s a minimal version of it:

from formidable.register import load_serializer, FieldSerializerRegister
from formidable.serializers.fields import FieldSerializer, BASE_FIELDS

field_register = FieldSerializerRegister.get_instance()

@load_serializer(field_register)
class ColorPickerFieldSerializer(FieldSerializer):

type_id = 'color_picker'

class Meta(FieldSerializer.Meta):
fields = BASE_FIELDS

Then you’re going to need to make sure that Django would catch this file at startup, and thus load the Serializer. It’s
done via the apps.py file.

from django.apps import AppConfig

class FormidableColorPickerConfig(AppConfig):
"""
Formidable Color Picker configuration class.
"""
name = 'formidable_color_picker'

def ready(self):
"""
Load external serializer when ready
"""
from . import serializers # noqa

As you’d do for any other Django application, you can now add this line to your __init__.py file at the root of the
python module:

default_app_config = 'formidable_color_picker.apps.FormidableColorPickerConfig'

11.2.1 Check that it’s working

Loading the Django shell:

>>> from formidable.serializers import FormidableSerializer
>>> data = {

"label": "Color picker test",
"description": "May I help you pick your favorite color?",
"fields": [{

"slug": "color",
"label": "What is your favorite color?",
"type_id": "color_picker",
"accesses": [],

}]

(continues on next page)

44 Chapter 11. External Field Plugin Mechanism

formidable Documentation, Release 0.1.0

(continued from previous page)

}
>>> instance = FormidableSerializer(data=data)
>>> instance.is_valid()
True
>>> formidable_instance = instance.save()

This means that you can create a form with a field whose type is not in django-formidable code, but in your
module’s.

Then you can also retrieve this instance JSON defintion

>>> import json
>>> print(json.dumps(formidable_instance.to_json(), indent=2))
{

"label": "Color picker test",
"description": "May I help you pick your favorite color?",
"fields": [
{

"slug": "color",
"label": "What is your favorite color?",
"type_id": "color_picker",
"placeholder": null,
"description": null,
"accesses": [],
"validations": [],
"defaults": [],

}
],
"id": 42,
"conditions": [],
"version": 5

}

11.2.2 Making your field a bit more clever

Let’s say that colors can be expressed in two ways: RGB tuple (rgb) or Hexadecimal expression (hex). This means
your field has to be parametrized in order to store this information at the builder step. Let’s imagine your JSON
payload would look like:

{
"label": "Color picker test",
"description": "May I help you pick your favorite color?",
"fields": [{

"slug": "color",
"label": "What is your favorite color?",
"type_id": "color_picker",
"accesses": [],
"color_format": "hex"

}]
}

You want then to make sure that your user would not send a wrong parameter, as in these BAD examples:

11.2. Loading the field for building time 45

formidable Documentation, Release 0.1.0

"color_format": ""
"color_format": "foo"
"color_format": "wrong"

For this specific field, you only want one parameter and its key is format and its values are only hex or rgb

Let’s add some validation in your Serializer, then.

from rest_framework import serializers
from formidable.register import load_serializer, FieldSerializerRegister
from formidable.serializers.fields import FieldSerializer, BASE_FIELDS

field_register = FieldSerializerRegister.get_instance()

@load_serializer(field_register)
class ColorPickerFieldSerializer(FieldSerializer):

type_id = 'color_picker'

allowed_formats = ('rgb', 'hex')
default_error_messages = {

"missing_parameter": "You need a `format` parameter for this field",
"invalid_format": "Invalid format: `{format}` is not one of {formats}."

}

class Meta(FieldSerializer.Meta):
config_fields = ('color_format',)
fields = BASE_FIELDS + ('parameters',)

def to_internal_value(self, data):
data = super().to_internal_value(data)
Check if the parameters are compliant
format = data.get('color_format')
if format is None:

self.fail('missing_parameter')

if format not in self.allowed_formats:
self.fail("invalid_format",

format=format, formats=self.allowed_formats)

return data

11.3 Load your field for the form filler

In your Django settings, add or update the settings.FORMIDABLE_EXTERNAL_FIELD_BUILDERS variable,
like this:

FORMIDABLE_EXTERNAL_FIELD_BUILDERS = {
"color_picker": 'formidable_color_picker.field_builder.ColorPickerFieldBuilder',

}

Then this namespace should point at your ColorPickerFieldBuilder class, which can be written as follows:

Important: The classes you’re pointing at in this settings must be subclasses of formidable.forms.

46 Chapter 11. External Field Plugin Mechanism

formidable Documentation, Release 0.1.0

field_builder.FieldBuilder.

import re
from formidable.forms.fields import ParametrizedFieldMixin, CharField
from formidable.forms.field_builder import FieldBuilder

COLOR_RE = re.compile('^#(?:[0-9a-fA-F]{3}){1,2}$')

class ColorPickerWidget(TextInput):
"""
This widget class enables to use the :meth:`to_formidable()` helper.
"""
type_id = 'color_picker'

class ColorPickerField(ParametrizedFieldMixin, CharField):
"""
The ColorPickerField should inherit from a ``formidable.forms.fields``
subclass.
"""
widget = ColorPickerWidget

def to_python(self, value):
return value

def validate(self, value):
Depending on the parent class, it might be a good idea to call
super() in order to use the parents validation.
super().validate(value)
params = getattr(self, '__formidable_field_parameters', {})
color_format = params.get('color_format')
if color_format == 'rgb':

if value not in ('red', 'green', 'blue'):
raise forms.ValidationError("Invalid color: {}".format(value))

elif color_format == 'hex':
if not COLOR_RE.match(value):

raise forms.ValidationError("Invalid color: {}".format(value))
else:

raise forms.ValidationError("Invalid color format.")

class ColorPickerFieldBuilder(FieldBuilder):
field_class = ColorPickerField

Important:

• The field should inherit from a formidable Field class, to enable to_formidable() and to_json() to be
used

• The widget associated with the Field should have the type_id property set to the same than the Serializer.

Note: Full example

You may browse this as a complete directly usable example in the following repository: “django-formidable-color-
picker”

11.3. Load your field for the form filler 47

https://github.com/peopledoc/django-formidable-color-picker
https://github.com/peopledoc/django-formidable-color-picker

formidable Documentation, Release 0.1.0

48 Chapter 11. External Field Plugin Mechanism

CHAPTER 12

Maintainers’ documentation

12.1 How to release

The contents of this section is a detailed version of the “release” part of the .github/
PULL_REQUEST_TEMPLATE.md file.

12.1.1 Requirements

You can use a dedicated virtualenv, or install the following in your userspace, but these should be available in your
$PATH:

• Python3 (any version)

• twine

12.1.2 Pre-release

• Create a branch with an adequate name, such as release/x.y.z.

• Edit the formidable/__init__.py source file and change the value of formidable.version to the
appropriate version number.

• Amend the CHANGELOG.rst file to reflect your change. Put there the version number, the date, and do not
hesitate to re-arrange its content if needed (e.g.: put sub-sections in the release notes).

• If the version deprecates one or more feature(s) check the docs deprecations.rst file and change it if
necessary.

• Check if you have to edit other files and change them accordingly (e.g.: README).

49

https://pypi.org/project/twine/

formidable Documentation, Release 0.1.0

Commit

Once your content is ready, commit it:

git commit -am "Release x.y.z"

If you want, you can also make a more detailed commit message, by copying/pasting the contents of the Changelog.

Push

Push your branch on Github and wait for the CI to return green.

You can also start to create your Pull-Request at this point, and check if you are at the correct step in the “Release”
checklist.

Attention: When to tag?

If you are very confident, you can tag here. But we’d recommend to wait to be sure that you have everything sorted
out.

Back to development

• Edit the CHANGELOG.rst file to add a “master (unreleased)” section, with a dummy log item, such as “Nothing
to see here yet”.

• Edit the formidable/__init__.py source file and put a non-release version number, such as x.y+1.0.
dev0.

• Commit this change with, for example, the following command: git commit -a -m "Back to dev
=> x.y+1.0.dev0"

Again, push the branch and wait for the tests to be green.

At this point, the pull-request should be ready for review.

12.1.3 Release

If the CI has returned a successful result, and your peers have reviewed your PR, you’re ready to proceed with the
release.

Tag the right commit

You should have two commits in your log corresponding to your latest changes:

$ git log --pretty=format:'%h %ad | %s' --date=short -n 2
8fd30ec 2021-04-29 | Back to dev => x.y+1.0.dev0
5b65073 2021-04-29 | Release x.y.0

Checkout to the “Release” commit and tag it.

$ git checkout 5b65073
$ git tag x.y.0

This tag can be pushed to Github with:

50 Chapter 12. Maintainers’ documentation

formidable Documentation, Release 0.1.0

$ git push --tags

Generate files

Now you can generate the files using the following command at the root of the project:

$ python3 setup.py sdist bdist_wheel

This should produce two files:

• dist/django-formidable-x.y.0.tar.gz

• dist/django_formidable-x.y.0-py3-none-any.whl

Merge the Pull Request

Merge from Github, or, if you dislike merge commits, type the following commands from your local copy:

$ git checkout master
$ git merge --ff release/x.y.z
$ git push

Upload to PyPI

In order to upload to PyPI, you should have an account and have at least the maintainer or owner role for this project
and have your .pypirc correctly configured to upload files (i.e. have the pypi repository as default and correct
credentials, using your password or a project token).

Using twine you may now upload the two files previously generated:

twine upload dist/django-formidable-x.y.0.tar.gz dist/django_formidable-x.y.0-py3-
→˓none-any.whl

You can then go to https://pypi.org/project/django-formidable/ to check the latest version.

Hint: Due to asynchronous tasks and cache invalidation, the latest version may not appear immediately. Be patient.

12.1.4 Post-release

There are a few cleanup tasks, such as:

• Delete the release branch,

• Edit the Release page on Github to reflect the changelog,

• Eventually make some feedback on the issues impacted by the new release,

• Enjoy & celebrate!

12.1. How to release 51

https://pypi.org/project/django-formidable/

formidable Documentation, Release 0.1.0

52 Chapter 12. Maintainers’ documentation

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

53

formidable Documentation, Release 0.1.0

54 Chapter 13. Indices and tables

Index

F
Formidable (class in formidable.models), 9
Formidable.DoesNotExist, 9
Formidable.MultipleObjectsReturned, 9
from_json() (formidable.models.Formidable static

method), 9

G
get_django_form_class()

(formidable.models.Formidable method),
9

get_next_field_order()
(formidable.models.Formidable method),
9

55

	Introduction
	Django model schema

	Install
	Install the app
	Configure the app

	Forms
	Formidable object
	Roles and access-rights
	Conditions
	Python builder

	Formidable Form JSON Schema specification
	API Specifications
	Security setup
	How to secure your django-formidable installation
	Example
	Secured fields

	Callbacks
	The callback functions
	Fails silently

	Developer’s documentation
	Testing
	Swagger documentation update

	Translations
	Crowdin support

	Deprecation timeline
	From 7.0.0 to x.y.z
	From 6.1.0 to 7.0.0
	From 5.0.0 to 6.0.0
	From 4.0.1 to 5.0.0
	From 3.3.0 to 4.0.0
	From 3.2.0 to 3.3.0
	From 3.1.0 to 3.2.0
	From 3.0.1 to 3.1.0
	From 2.1.2 to 3.0.0
	From 1.7.0 to 2.0.0
	From 1.3.0 to 1.4.0
	From 0.15 to 1.0.0
	From 0.11.1 to 0.12.0
	From 0.8.2 to 0.9

	External Field Plugin Mechanism
	Tree structure
	Loading the field for building time
	Load your field for the form filler

	Maintainers’ documentation
	How to release

	Indices and tables
	Index

